Imfinitessimal text for T finde

\n
$$
\mathcal{S}_{\epsilon}T = \epsilon \mathcal{J} + 2 \mathcal{J} \epsilon T + \frac{\epsilon}{12} \mathcal{J}^{3} \epsilon \rightarrow [\frac{(\mathcal{J}f)^{2}T(f) + \frac{\epsilon}{12}S]}{(\mathcal{J}f)^{2}T(f) + \frac{\epsilon}{12}S}]
$$
\n
$$
\mathcal{S}(f_1\mathbf{z}) = \frac{\mathcal{J}f \mathcal{J}f - \frac{1}{2}(\mathcal{J}f)^{2}}{(\mathcal{J}f)^{2}} = \mathcal{J}f
$$
\n
$$
\mathcal{S}(f_1\mathbf{z}) = \frac{\mathcal{J}f \mathcal{J}f - \frac{1}{2}(\mathcal{J}f)^{2}}{(\mathcal{J}f)^{2}} = \mathcal{J}f
$$
\n
$$
\mathcal{S}(f_1\mathbf{z}) = \frac{\mathcal{J}f \mathcal{J}f - \frac{1}{2}(\mathcal{J}f)^{2}}{(\mathcal{J}f)^{2}} = \mathcal{J}f
$$
\n
$$
\mathcal{S}(f_1\mathbf{z}) = \frac{(\mathcal{J}f)^{2}}{(\mathcal{J}f)^{2}} = \frac{(\mathcal{J}f)^{2}}{(\mathcal{J}
$$

Finite-size effect (Casimir effect)

$$
\frac{c}{2} = (0| [L_{2}, L_{-1}] | 0) = (0|C_{2} L_{1}^{+} | 0) = 0
$$
\n
$$
\frac{c}{2} = (0| [L_{2}, L_{-1}] | 0) = (0|C_{2} L_{1}^{+} | 0) = 0
$$
\n
$$
\frac{d}{2}L_{1}^{+} = (0|C_{1}^{+})
$$
\n
$$
= h(m+1) w^{n} \varphi(w) + w^{n} \frac{d}{2}L_{2}^{+} = 0
$$
\n
$$
= h(m+1) w^{n} \varphi(w) + w^{n} \frac{d}{2}L_{2}^{+} = 0
$$
\n
$$
= h(m+1) w^{n} \varphi(w) + w^{n} \frac{d}{2}L_{2}^{+} = 0
$$
\n
$$
= h(m+1) w^{n} \varphi(w) + w^{n} \frac{d}{2}L_{2}^{+} = 0
$$
\n
$$
= 0 \quad \text{with } n > 0
$$
\n
$$
[L_{n}, \varphi(0)] = 0 \quad \text{with } n > 0
$$
\n
$$
= (L_{0}, \varphi(0)] = h \varphi(0) \Rightarrow L_{0} | h \rangle = h | h \rangle
$$
\n
$$
= h \frac{d}{2}L_{1}^{+} = 0
$$
\n
$$
= (0, 21) \quad L_{0} | h \rangle = h | h \rangle
$$
\n
$$
= (0, 21) \quad L_{1} | h \rangle = 0 \quad n \le -1
$$
\n
$$
= (0, 21) \quad \text{with } n \in \mathbb{Z}
$$
\n
$$
= (0, 21) \quad \text{with } n \in \mathbb{Z}
$$
\n
$$
= (0, 21) \quad \text{with } n \in \mathbb{Z}
$$
\n
$$
= (0, 21) \quad \text{with } n \in \mathbb{Z}
$$
\n
$$
= (0, 21) \quad \text{with } n \in \mathbb{Z}
$$
\n
$$
= h \frac{d}{2}L_{1}^{+} = 0
$$
\n
$$
= 1 \quad \text{with } n \in \mathbb{Z}
$$
\n $$

$$
m=1
$$
\n
$$
\sum_{i} 3i \cdot (0|\phi_{i}(t_{1})... \phi_{n}(t_{n})|_{0}) = 0
$$
\n
$$
m=0
$$
\n
$$
\sum_{i} (h_{i} + z_{i} \partial_{z_{i}}) < \cdots > 0
$$
\n
$$
\sum_{i} (2h_{i}z_{i} + z_{i}^{2} \partial_{z_{i}}) < \cdots > 0
$$
\n
$$
m=0
$$
\n
$$
\sum_{i} (2h_{i}z_{i} + z_{i}^{2} \partial_{z_{i}}) < \cdots > 0
$$
\n
$$
m=0
$$

3.6. Descondant
\n
$$
[\phi_{n}] : L_{-n} \varphi(w) = \frac{Gd\vartheta}{2n_{i}} \frac{1}{(2-w)^{n-1}} T(z) \varphi(w)
$$
\n
$$
[-2 \pm (w) = \oint \frac{T(z)}{(2-w)} = T(w) = 1
$$
\n
$$
L_{-2} \pm (w) = \oint \frac{T(z)}{(2-w)} = T(w) = 1
$$
\n
$$
= \frac{1}{2}
$$

4. Kac determinant and unitarity
\n
$$
ln
$$
 = $\phi(n|0)$ satisfy L_0ln = hln
\n $L_n|0\rangle = 0$ for n^2-1
\nwe want to find "scaling operators"
\nwhich is eigenstate of L_0 .
\n $L_0|w\rangle = h_0w$
\n $L_0|w\rangle = (h_0 - n) L_n|0\rangle$, $L_0, L_0|$
\n $L_0|0\rangle = (h_0 - n) L_n|0\rangle$, $L_0, L_0|$
\n $L_0|0\rangle = (h_0 - n) L_n|0\rangle$
\n $\frac{1}{h_0}L_n|0\rangle$
\n $\frac{1}{h_0}L_n|0\rangle$
\n $\frac{1}{h_0}L_n|0\rangle$
\n $\frac{1}{h_0}L_n|1\rangle$
\n $\frac{1}{h_0}L_n|1\rangle$
\nE=LfL₀: bounded from below \rightarrow
\nSome state (h, w, s) should be stotped: L_n|h>=0
\nSome state (h, w, s) should be stotped: L_n|h>=0
\nfor all this in $V.M$. are NOT linearly indep.
\n \Rightarrow \exists some $|0\rangle = 0$ and $\frac{1}{h_0}ln$ is not always
\n*level 1(n=1)* $L_1|h\rangle = 0$ \rightarrow heo only
\n $\frac{1}{h_0}L_n|0\rangle = 0$ for all ω
\n \therefore L_m|0\rangle = 0 for all ω

Verma modile $\frac{1}{\sqrt{2}}\int_{\mathbb{R}^{3}}\frac{1}{\sqrt{2}}\,d\mu$ $\frac{1}{\sqrt{\frac{1}{16}}}\int_{L-11}^{L-11}l_{1}^{2}l_{1}^{2}$ $2L_{6}$
 L_{-1} $(L_{1}, L_{-1}) + [L_{1}, L_{-3}]L_{-1}$ $[L_{1}, L_{2}] |h\rangle + a [L_{1}, L_{1}^{2}] |h\rangle = 3 L_{1}|h\rangle$ $+2a(L-1L_0+L_0L_7)h$ $=\left[3+2\alpha(h+(h+1))\right]L_{-1}|h\rangle=0$ $a = -\frac{3}{2(2hH)}$ $(2-(2hH)^{2} + 32hH)$ $(1-(2hH)^{2} + 32hH)$ (1) $[L_{21}L_{-2}]}|h\rangle + \alpha [L_{21}L_{1}^{2}]|h\rangle = (4h + \frac{C}{2} + G \alpha h)|h\rangle$ $= 0$ \longrightarrow $C = -4h(2+3a) = 2h\frac{(5-8h)}{2h+1}$ $\int_{0}^{a} \left(\int_{-2}^{1} \frac{3}{2(2ht)} \int_{-1}^{2} d\phi = 0$ for \int_{0}^{1} is valid for any correlation fuch containg of
or $L-2\phi = -a\int_{-4}^{2} \phi = -a\frac{1}{2}\phi$ from $T(z)\varphi(w) \equiv \sum (z-w)^{n-2} \hat{L}_{-n}\varphi(w)$ $=\frac{1}{(2-w)^2}\int_{1/h}^{\infty} \frac{dy}{z-w} + \frac{1}{z-w} \frac{1}{2-w} \frac{1}{2}w + \frac{1}{2-w} \frac{1}{2} + \frac{1}{2-w} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$ $\int_{0}^{0} \int_{-2}^{1} \phi = -\frac{h}{(z-w)^{2}} \phi = \frac{1}{z-w} \frac{\partial w}{\partial x} + \frac{1}{z-w} (z) \phi(w)$

$$
\frac{3}{2(n_{1}+1)}\frac{2^{2}}{20n_{1}+1} du_{1} \left\langle \varphi_{1}(w_{1})\cdots\varphi_{n}(w_{n}) \right\rangle
$$
\n
$$
= \left\langle \left(\frac{b_{1}}{2-w_{1}}x\varphi_{1} - \frac{1}{2-w_{1}}a_{1}\varphi + \frac{1}{2}\left(\frac{b_{1}}{2-w_{1}^{2}}x\varphi_{1}(w_{1})\varphi_{2}(w_{1})\cdots\varphi_{n}(w_{n}) \right) \right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{j}}{(w_{1}-w_{j})^{2}} + \frac{1}{w_{1}-w_{j}}\frac{a_{0}}{2w_{j}} \right)\left\langle \varphi_{1}(w_{1})\cdots\varphi_{n}(w_{n}) \right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{j}}{(w_{1}-w_{j})^{2}} + \frac{1}{w_{1}-w_{j}}\frac{a_{0}}{2w_{j}} \right)\left\langle \varphi_{1}(w_{1})\cdots\varphi_{n}(w_{n}) \right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{1}}{(w_{1}-w_{j})^{2}} + \frac{1}{w_{1}-w_{j}}\frac{a_{0}}{2w_{j}} \right)\left\langle \varphi_{1}(w_{1})\cdots\varphi_{n}(w_{n}) \right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{1}\cdot v_{j}}{k_{1}+1}x_{2} + \frac{1}{(b_{1}+1)(b_{1}+1)}x_{3} \right)\left\langle \varphi_{1}(w_{1})\right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{1}-y_{1}}{w_{1}-w_{1}}\right)\left\langle \varphi_{1}(w_{1})\right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac{b_{1}-y_{1}}{w_{1}-w_{1}}\right)\left(\frac{1}{w_{1}-w_{j}}\right)\left\langle \varphi_{1}(w_{1})\cdots\varphi_{n}(w_{n}) \right\rangle
$$
\n
$$
= \sum_{j\neq j}\left(\frac
$$

4.2. Kac determinant
\nmatrix A (nxn) : Aln>2a_nln)
\nif dd A = 0 some of a_n = 0 & {
$$
\{n\}\}\omega
$$
 not
\n $A=\{\frac{0!}{1!}=-1\}\Rightarrow$ from the this space
\n $n=2$
\n π
\n(a₁)
\n(d₁)
\n π
\n(b) $L_2L_2|h$ (b) $L_1L_2|h$
\n(c) L_1L_2
\n(d₁)
\n(d₁)
\n(c) L_2L_1h (d₁)
\n(e) $h_1L_2L_2|h$ (e) h_1L_1h
\n(f₁)
\n(e) h_1L_2
\n(e) h_1L_1
\n(f₂)
\n(e) h_1L_2
\n(f₁)
\n(g₁)
\n(g₁)
\n(h₁)
\n(c) $h_{1,2},h_{2,1}-\frac{1}{16}(5-c) + \frac{1}{16}\sqrt{(1-c)(2s-c)}$
\n(g₁)
\n(g₁)
\n(h₁)
\n(h₁)
\n(h₁)
\n(i) $h_{1,2},h_{2,1}-\frac{1}{16}(5-c) + \frac{1}{16}\sqrt{(1-c)(2s-c)}$
\n(g₁)
\n(h₁)
\n(i) $h_{1,2},h_{2,1}-\frac{1}{16}(5-c) + \frac{1}{16}\sqrt{(1-c)(2s-c)}$
\n(g₁)
\n(h₁)
\n(i) $h_{1,2},h_{2,1}-\frac{1}{16}(5-c) + \frac{1}{16}\sqrt{(1-c)(2s-c)}$

$$
\frac{Kac}{\sqrt{N}} \text{ computed } \left\{\begin{array}{l}\text{C.} \text{C.} \text{
$$

where
$$
Q_N = const
$$
, $indep \text{ of } c$.

\n
$$
h_{p,q}(C) = \frac{1-c}{a6} \left[(p+g) + (p-8) \frac{p+2}{1-c} \right] - 4
$$
\n
$$
= \frac{(m+1)p - mg^2 - 1}{4m(m+1)} \quad \text{with} \quad m = -\frac{1}{2} \pm \frac{1}{2} \frac{p+2}{1-c}
$$
\n
$$
= \frac{1}{4} \left[(p \alpha_+ + 8 \alpha_-)^2 - (d_+ + d_-) \right]
$$
\n
$$
= \frac{1}{4} \left[(p \alpha_+ + 8 \alpha_-)^2 - (d_+ + d_-) \right]
$$
\n
$$
= \frac{1}{4} \left[(p \alpha_+ + 8 \alpha_-)^2 - (d_+ + d_-) \right]
$$
\n
$$
= \frac{1}{4} \left[(p \alpha_+ + 8 \alpha_-)^2 - (d_+ + d_-) \right]
$$
\n
$$
= \frac{1}{4} \left[(p \alpha_+ + 8 \alpha_-)^2 - (d_+ + d_-) \right]
$$

desandants of null states at level m
\n
$$
|h+n\rangle=0 \rightarrow at level N, P(n-n)
$$
 null states
\nwhich are $L_{-n} = -L_{-n} \ln(n+n) = 0$
\n $\frac{1}{2}n_{3}+n-n$
\n $\frac{1}{2}n_{1}+n_{2}$
\n $\frac{1}{2$

$$
[Consequences]
$$
\n
$$
[x] (c) 1, h \ge 6; m \text{ is not real } \rightarrow hpg <0 \text{ (P-S)}
$$
\n
$$
[c) 2g; -|c| \le 7
$$
\n
$$
[c) 2g; -|c| \le 7
$$
\n
$$
[c + h_{pl}] \ne 0 \text{ for } h > 0
$$
\n
$$
[c + h_{pl}] \ne 0 \text{ for } h > 0
$$
\n
$$
= \pi M; \Rightarrow M; \ge 0
$$
\n
$$
\therefore 1, h \ge 0; m \text{ or null states.}
$$
\n
$$
C = 1, h_{pl} = \frac{q - 1}{4};
$$
\n
$$
M = \pi \left(h - \frac{q - 1}{4} \right) \left(h - \frac{(1 - r)^3}{4} \right) = \frac{\pi}{14} \left(h - \frac{q - 1}{4} \right)^2 \ge 0
$$
\n
$$
\frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow m \text{ or null states.}]}{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow m \text{ or null states.}]} \Rightarrow \frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow m \text{ or null states.}]}{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]} \Rightarrow \frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]}{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]} \Rightarrow \frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]}{[c + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]} \Rightarrow \frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]}{[c + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]} \Rightarrow \frac{[c + h + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or null states.}]}{[c + \frac{q^2}{4} \Rightarrow M \land 0 \Rightarrow M \text{ or
$$

$$
h_{rs}(m) = \frac{(m+1)r - ms)^{2} - 1}{4m(m+1)}
$$
\n
$$
m \in \mathbb{Z} \implies 1 \le r \le m-1, \frac{cosh(x)}{1} \le s \le r
$$
\n
$$
r \ge m+1, \frac{cosh(x)}{1} \le s \le r
$$
\n
$$
r \ge m+1, \frac{cosh(x)}{1} \le s \le m+1
$$
\n
$$
m \ge m \le \frac{N}{2} \quad \text{crotional}
$$
\n
$$
C = \frac{6N}{m(m+1)} \quad m = \frac{e^{m+1}}{p-p} \quad \text{m+1} \ge \frac{e^{m}}{p-p} \quad \text{m+1} \ge \frac{e^{m}}{1 \le s \le p-1}
$$
\n
$$
m-r, \frac{m+1}{s} = h_{rs} \quad \text{m+1} \ge \frac{e^{m}}{1 \le s \le m} \quad \text{m+1} \ge \frac{e^{m}}{1 \le h} \quad \text{m+1} \ge \frac{e^{m}}{1
$$

$$
\frac{O(\text{vortile}) of MM}{|\mathcal{X} \times \text{in } \mathbb{R}^2} = \frac{1}{\sqrt{6}} \left(5c \pm \sqrt{c-16-36} \right)
$$
\n
$$
\frac{1}{\sqrt{6}} \left(5c \pm \sqrt{c-16-36} \right)
$$
\n
$$
= \frac{1}{\sqrt{6}} \left(5c \pm \sqrt{c-16-36} \right)
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\frac{1}{\sqrt{6}} - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) = 0
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\frac{1}{2} - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) \left(\phi(2) \times 7 = 0
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\frac{1}{2} - \frac{3}{2(2\pi i)} \frac{a}{\sqrt{6}} \right) - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) \left(\phi(2) \times 7 = 0
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\frac{1}{2} - \frac{3}{2(2\pi i)} \frac{a}{\sqrt{6}} \right) - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) \left(\phi(2) \times 7 = 0
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\phi(\pi) \phi(x) \right) = \left(2 - \frac{3}{2} \right)^{1/2} \left(\frac{1}{2} - \frac{3}{2} \right) \frac{a^3}{\sqrt{6}} \right) \left(\phi(2) \phi(x) \right) = 0
$$
\n
$$
\frac{1}{\sqrt{6}} \left(\phi(\pi) \phi(x) \right) = \left(2 - \frac{3}{2} \right)^{1/2} \left(\frac{1}{2} - \frac{3}{2(24\pi i)} \frac{a^3}{\sqrt{6}} \right) \left(\frac{1}{2} \left(\frac{1}{2} - \frac{3}{2} \right) \frac{a^3}{\
$$

so fun, no restrictions on (r,s) EZ,

$$
\phi_{(r,s_1)} \times \phi_{(r,s_2)} = \sum_{k=1+1}^{k_{max}} \sum_{\substack{q=1+1, r=1, \text{ odd}}}^{k_{max}} \phi_{(k,k)}
$$
\n
$$
\phi_{(r,s_1)} \times \phi_{(r,s_2)} = \sum_{k=1+1, r=1}^{k_{max}} \sum_{\substack{q=1+1, r=1, \text{ odd}}}^{k_{max}} \phi_{(k,k)}
$$
\n
$$
\phi_{r,s_1} \neq \phi_{r,s_2}
$$
\n
$$
\phi_{r,s_1} \neq \phi_{r,s_1}
$$
\n
$$
\phi_{r,s_2} \neq \phi_{r,s_1}
$$
\n
$$
\phi_{r,s_1} \neq \phi_{r,s_2}
$$
\n
$$
\phi_{r,s_1} \neq \phi_{r,s_1}
$$
\n
$$
\phi_{r,s_2} \neq \phi_{r,s_1}
$$
\n
$$
\phi_{r,s_1} \neq \phi_{r,s_1}
$$
\n
$$
\phi_{r,s_1}
$$

 ϵ

Minimal CFT
\nC_{pp'}, hr₁s, 2-p†. are known.
\nBut 3-p†. needs F(x) conformal block.
\n
\nG⁽⁴⁾ can be determined by DE or integration.
\nfrom G⁽⁴⁾ and conf. block ⇒ C_{ijk}
\n
\n
$$
G^{(4)}
$$
 can be determined by DE or integration.
\n
\nfrom G⁽⁴⁾ and conf. block ⇒ C_{ijk}
\n
\n
$$
G^{(4)}
$$
 can be determined by DE or integration.
\n
\n
$$
G^{(4)}
$$
 can be determined by DE or integration.
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 and
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 and
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 and
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 and
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can be defined as a
\n
$$
G^{(4)}
$$
 can

(Ex) Ising model $0 = 1 + C5$
 $0 = 1 + C5$ $2=\frac{212214}{21324}$ $\left(\frac{4}{3} \frac{\partial^2}{\partial z_i^2} - \sum_{j \neq i}^{1} \left(\frac{\gamma_{jk}}{(z_i - z_j)^2} + \frac{1}{z_i - z_j} \frac{\partial}{\partial z_j} \right) \right) \left(\frac{\zeta^{4}}{4} \right) = 0$ => two solutions for FCXI=fi (x) voliz $\frac{1}{\sqrt{112}} = (1 \pm \sqrt{1 - x})^{\frac{1}{2}}$ $\therefore C_3^{(4)} = \left| \frac{\frac{1}{213} \frac{1}{224}}{\frac{1}{212} \frac{1}{233} \frac{1}{234} \frac{1}{241}} \right|^{\frac{1}{4}} \sum_{\substack{i,j=1 \\ i,j \neq j}}^{2} \frac{1}{\sqrt[n]{i}} \frac{1}{\sqrt[n]{i}} \cdot \left(x \right) f_j(\overline{x})$ Q_{11} $(1+\sqrt{1-x})(1+\sqrt{1-x})^{\frac{1}{2}} + Q_{12}(1-\sqrt{1-x})^{\frac{1}{2}}(-\sqrt{1-x})$ + a (1 + v - x) (1 - v - x) + an (1 - v - x) = mot single $\frac{2(28)}{2(3224)}\times10^{-2}$ \therefore $G_{11} = 0 \frac{2}{\sqrt{2}}$
 $A_{12} = 0$
 $A_{21} = 0$
 $A_{12} = 0$ $\therefore G^{(4)} \propto \left| \frac{z_{13} z_{24}}{z_{12} z_{23} z_{34} z_{4}} \right|^{\frac{1}{4}} \left[\left| \left| + \sqrt{1 - x} \right| + \left| \left(- \sqrt{1 - x} \right| \right) \right| \right]$ $\frac{1}{2} - \frac{1}{16} - \frac{1}{16}$
3/2 - 16 16
3/2 - 2 Now consider OPE)
 $\frac{e^{x} - e^{-x}}{3/8 - 3/8}$ $\frac{1}{2!2}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4}$ $\frac{1}{2!3}$ $\frac{1}{2!4$ $\frac{1}{|Z_{12}|^{\frac{1}{4}}|Z_{34}|^{\frac{1}{4}}} + C_{00\epsilon}^{2} |Z_{12}|^{\frac{3}{4}} |Z_{34}|^{\frac{3}{4}} \underbrace{\left\langle \epsilon_{(3)} \epsilon_{(4)} \right\rangle }_{1}$ \sqrt{a} $|z_{2a}|^2$

$$
G^{(4)} = \frac{a}{|z_{k}|^{\frac{1}{4}}|z_{k}} \left(\frac{|1+\sqrt{1-x}1| + |1-\sqrt{1-x}1|}{|1-x|^{\frac{1}{4}}}\right) \approx \frac{2a}{\cdots} (1+\frac{ln}{4})
$$

\n
$$
G^{(4)} \sim \frac{1}{|z_{12}|^{\frac{1}{4}}|z_{k}} \left(\frac{1}{|z_{k}|^{\frac{1}{4}}}| + C_{\sigma \sigma \epsilon}^{2} \frac{|z_{12}|^{2} |z_{34}|}{|z_{k1}|^{\frac{1}{4}}} + \cdots \right)
$$

\n
$$
a_{0} \sim -a_{0} \left(\frac{|z_{13}|}{|z_{13}|} \right) \sigma^{+} \sim 0
$$

\n
$$
\left(\frac{|1+\sqrt{1-x}|}{|1-x|^{2}} \right) \approx \frac{2-\frac{x}{2}}{2} \approx 2\left|1-\frac{x}{4}\right| \approx 2 + 9\sqrt{x^{2}}
$$

\n
$$
\left(\frac{x}{1-x}|^{2} \right) \approx \frac{1}{2} |x| \approx \frac{2}{a_{13} \cdot 2a_{4}} \quad |x_{2} = \frac{2a_{2}a_{4}}{a_{13} \cdot 2a_{4}} \approx 2 + 9\sqrt{x^{2}}
$$

\n
$$
\sqrt{2a_{13}^{\frac{1}{4}}|z_{12}|^{2}} \approx \frac{1}{2} |x| \approx \frac{2}{a_{13} \cdot 2a_{4}} \quad |x_{2} = \frac{2a_{3}a_{4}}{a_{33} \cdot 2a_{4}} \approx 0
$$

free boson

 $S = \frac{9}{2} \int d^2x \left[(2.0)^2 + m^2 \varphi^2 \right] \qquad K(x,y) \equiv \langle \varphi(x) \varphi(x) \rangle$ $\equiv \frac{1}{2}\int d^{2}x d^{2}y \phi(x) A(x,y) \phi(y) - \psi A(x,y) = \frac{2}{3} \int d^{2}x d^{2}y$ $K = A^{-1}$ or $g(-a_x^2 + m^2)K(x, y) = \frac{1}{2}(x-y)$ = $2\pi g \left(-\frac{1}{2}m^{3}g(k)dy\right)$
= $2\pi g \left(-\frac{1}{2}m^{3}g(k)dy\right)$
= $2\pi g \left(-\frac{1}{2}m^{3}g(k)dy\right)$
= $2\pi g (g(k)g)$ = $2\pi g$ $\left[-rK(r) + m^{2}\int_{0}^{r} d\theta \sin \theta \right] = 1$ $K'(r) = -\frac{1}{2\pi g} \frac{1}{r}$ \rightarrow $K(r) = -\frac{1}{2\pi g} \log r$ $if m=0$ j $\therefore \angle \varphi(x) \varphi(y) = -\frac{1}{2\pi g} \log |x-y| = -\frac{1}{arg} \log(\bar{x}-\bar{y})^2$
 $g=\frac{1}{4\pi} \Rightarrow (\varphi(z) \varphi(w)) = -\log(7-w)$ $(\phi(x) \equiv \underline{\phi(s) + \underline{\phi(s)}})$

(m=0; one-more durivative: m² K = $\frac{1}{r}$ of $(r\frac{dK}{dr})$
Bessel: K(r) = $\frac{1}{2\pi g}$ Ko(mr), Ko(x)= $\int_{0}^{\infty} dt \frac{c \omega f(rt)}{\sqrt{r} \tau t}$

$$
\langle \oint_{\alpha} \frac{d\alpha}{\beta} \Delta f(x) = \frac{1}{2} \int_{\alpha}^{\alpha} \frac{d\alpha}{\beta} \Delta f(x) = \frac{1}{2} \int_{\alpha}^{\alpha} \frac{d\alpha}{\beta} \Delta f(x) = -\frac{1}{2} \int_{\alpha}^{\alpha} \frac{d\alpha}{\beta} \Delta f(x) = \frac{1}{2} \int_{\alpha}^{\alpha} \frac{d\alpha}{\beta} \Delta f(x) = \frac{1
$$

$$
\oint_{T} = -\frac{1}{2}i \partial P \partial P'
$$
\n
$$
T(z) T(w) = +\frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot i \frac{\partial P}{\partial P} \partial P' \cdot i - \frac{1}{4} \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4} \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4} \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4} \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4} \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \partial P' \cdot k - \frac{1}{4}i \frac{\partial P}{\partial P} \
$$

Coulomb gas formalism Free boson $S = \frac{2}{3} \int d^{2}x (Q_{\mu}\phi)^{2}$ $g = \frac{1}{4} \phi = Q + \overline{Q}$ $T = -\frac{1}{2}i2\varphi \partial_z \varphi : \rightarrow \nabla = e^{i\alpha \varphi} \rightarrow h = \frac{\alpha^2}{2}$ $urV_{\alpha} \equiv e^{\sqrt{2}i\alpha\phi} \rightarrow h_{\alpha} = \alpha^{2}$ $\varphi(z) = \varphi_{o} - i a_{o} \ln z + i \sum_{m} \frac{1}{n} a_{m} z^{-m}$ $x^{2e\omega - \text{mode}} [l_{0}, a_{0}] = i$
 $\sqrt{\alpha^{(2)}(d^{(2)})(d^{(2)})}$ $[a_n, a_m] = m \$ utm,o $|Cvmd. \langle V_{d_1} \cdots V_{d_n}^{(z_n,\overline{z}_n)} \rangle = \prod_{i < j} |z_i - \overline{z}_j|^{4d_i d_j}$
i(i) $d_1 + \cdots + d_n = 0$ $i \hat{f}$ = $exp\left[\sum_{i$ Z_{1} $2d_{1}$ potential energy of $\frac{1}{284}$ $\frac{1}{26-2}$ Holomorphic only $\frac{\langle V_{d_1}(z_1) - \cdot V_{d_n}(z_n) \rangle}{\frac{1}{n!} \cdot \cdot \cdot \cdot} = \prod_{i \le j} (\overline{z_i} - \overline{z_j})^{2d_i d_j}$ Et Cunsistent with $2,3-\rho^2$. $\begin{cases} \left\langle V_{\alpha_{1}}(2i)V_{d}(2i)\right\rangle = (2i-2i)^{2} (d_{1}=-d_{2}) \\ \left\langle V_{\alpha_{1}}(2i)V_{\alpha_{2}}(2i)\right\rangle = (2i-2i)^{2} (d_{1}=-d_{2}) \end{cases}$ 20203 $\langle V_{d_1}(t)\ V_{d_2}(t_1)\ V_{d_3}(t_3)\rangle = (z_1-z_1)^{2d_1d_2} (z_1-z_2)^{2d_2d_3} (z_1-z_2)^{2d_3d_3}$ $2d_1d_2 = (d_1 + d_2)^2 - d_1^2 - d_2^2 - d_3^2 - d_1^2 - d_2^2 = h_3 - h_1 - h_3$ v global conf. sym dires.

$$
\sqrt{x(z)} = \int_{\alpha}^{\alpha} \int_{\alpha}^{z} \frac{1}{z} e^{i\sqrt{2} \alpha} \int_{\alpha}^{z} \frac{1}{z} e^{-i\sqrt{2} \alpha} \int_{\alpha}^{z} \frac{1}{z
$$

10.
$$
2x^2 + 3x + 1
$$

\n $6x^2 + 3x + 1$
\n $6x^3 + 1$
\n $10x^2 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$
\n $10x^2 + 3x + 1$
\n $10x^3 + 3x + 1$

Excited states (guessi-holes)

\n
$$
\langle e^{\frac{i}{\sqrt{5}}\varphi(z)} e^{\frac{i}{\sqrt{5}}\varphi(w)} \frac{1}{\sqrt{1}} e^{i\sqrt{5}\varphi(z_i) - i\sqrt{5}} e^{i\sqrt{5}\varphi(z_i) - i\sqrt{5}} e^{i\sqrt{5}\varphi(z_i) - \sqrt{5}\varphi(z_i) - \sqrt{5}\varphi(z_i
$$

Because found charge (imaginary) no matrix)
\n
$$
S=\frac{1}{6\pi}\int d\overline{x}\sqrt{\frac{3}{3}}(\partial_{x}\phi)\phi+2iEx_{0}\phi R)
$$
\n
$$
S=\frac{1}{6\pi}\int d\overline{x}\sqrt{\frac{3}{3}}(\partial_{x}\phi)\phi+2iEx_{0}\phi R)
$$
\n
$$
S=\frac{16\times10}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=1200e^{16}
$$
\n
$$
S=\frac{16\times10}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=1200e^{16}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=1200e^{16}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=1200e^{16}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{2000e^{16}}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{2000e^{16}}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{2000e^{16}}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{2000e^{16}}
$$
\n
$$
S=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi}{6}}\frac{1}{8}R=\frac{1}{10\pi}\int_{\frac{5\pi
$$

\n
$$
\int_{\pi} \psi h \omega h = 1, \quad \int d\phi \psi(\theta) \equiv A \omega
$$
 has a solution of the
\n $\int_{-\infty}^{\infty} f(x, y) = \oint d\phi \left[Lx, \Psi \right] = \oint d\phi \left[h(x, y) \right] = \oint d\phi \left[\frac{1}{2} \pi x \right] = \oint d\phi \left[2 \pi x \right] = \oint d\phi \left[\frac{1}{2} \pi x \right] = \oint d\phi \left$

Now cunsider 3-pt $(\phi_{r_{1}s_{1}}, \phi_{r_{2}s_{1}}\phi_{r_{3}s_{3}}) = (\bigvee_{r_{1}s_{1}}\bigvee_{r_{3}s_{2}}\bigvee_{r_{3}}\frac{1}{s_{3}}\bigotimes_{+}^{s}\bigtriangleup^{s}_{-})$ a can not fix C_{123} will be determined by 4-pt.